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The transition metal-catalyzed allylic substitution with unstabi-
lized carbon nucleophiles represents an important cross-coupling
reaction for the construction of ternary carbon stereogenic centers.1

A key and significant limitation with this approach is the necessity
to employ allylic alcohol derivatives that provide symmetrical
π-allyl intermediates, which thereby circumvent problems associated
with regiochemical infidelity.2 Another serious issue arises from
the basic nature of the unstabilized nucleophile, which either
promotes elimination of the metal-allyl intermediate or hydrolysis
of the leaving group in the allylic alcohol fragment. Furthermore,
the stereospecific alkylation is often subject to stereochemical
inversion through the direct addition of the nucleophile to the metal
center followed by concomitant reductive elimination.3

We envisioned that the rhodium-catalyzed allylic alkylation with
an organozinc would facilitate the regio- and enantiospecific
alkylation as a result of the propensity for the reaction to proceed
through a configurationally stableπ-allyl or enyl (σ + π) organo-
metallic intermediate and the low basicity of the nucleophilic
reagent.4,5 Herein, we now describe the first regio- and enantio-
specific metal-catalyzedintermolecular allylic alkylation ofunsym-
metrical allylic alcohol derivatives(S)-1, using aryl organozinc
halides, for the construction of 3-aryl propenyl derivatives (R)-2
with inversion of absolute configuration (eq 1).

Preliminary studies demonstrated that the trimethyl phosphite-
modifiedWilkinson’s catalyst that had proven so general for the
allylic alkylation using stabilized carbon and heteroatom nucleo-
philes was not an effective catalyst with organozinc reagents.
Interestingly, although the application of a hydrotris(pyrazolyl)-
borate rhodium complex had not been examined in the context of
an allylic substitution reaction, this catalyst proved optimum for
organozinc reagents as nucleophiles.6 While traditional leaving
groups favored the formation of the primary allylic alkylation
adducts, fluorinated leaving groups dramatically improved the
specificity (2°:1° ) (CF3)2CHOCO > CF3CO > MeOCO >
MeCO). Table 1 outlines the optimization of the nucleophile and
catalyst components of this challenging cross-coupling reaction with
the optimal leaving group. Treatment of the allylic carbonate1a
with a catalytic amount of TpRh(C2H4)2 and the organozinc reagent
derived from the transmetalation of phenyllithium with a zinc halide
salt, furnished the alkylation products2a/3a, demonstrating that
zinc bromide was the optimum salt for the alkylation (entry 2 vs
1/3). Additional studies examined the effect of the organozinc
reagent on selectivity (entries 2, 4, and 6). This study suggested
that lithium bromide, generated as a consequence of the transmeta-
lation step, might influence the regiospecificity through catalyst/
nucleophile modification (entries 2/4 vs 6).7 Interestingly, the

addition of lithium bromide to the catalyst prior to the introduc-
tion of the organozinc and allylic carbonate1a, furnished the
secondary allylic alkylation adduct2a with significantly improved
regiospecificity (entries 5 and 7). Finally, dibenzylidenacetone (dba)
was added to improve the selectivity and reproducibility of the
cross-coupling reaction, by serving as a surrogate ligand, given the
volatility of the ethylene ligands (entry 8).

Table 2 summarizes the application of the optimized reaction
conditions (Table 1, entry 8)8 to a variety of racemicsecondary
allylic carbonates (Vide supra). The allylic alkylation is clearly

Table 1. Effect of Lithium Halide Salts on the Nucleophile and
Catalyst in the Regiospecific Rhodium-Catalyzed Allylic Alkylation

entry
organozinc reagenta

PhLi/ZnX2

in situ LiX
(equiv)b

catalyst
additivec

2°:1°
2a:3ae

yield
(%)f

1 Ph3ZnLi LiCl (2) - 1:1 55
2 “ LiBr “ - 3:1 88
3 “ LiI “ - NA 0
4 Ph2Zn LiBr (2) - 3:1 96
5 “ “ “ LiBr 13:1 92
6 PhZnBr “ (1) - 1:1 86
7 “ “ “ LiBr 13:1 95
8 PhZnBr LiBr (1) LiBr/dbad 15:1 99

a All the reactions were carried out on a 0.1 mmol reaction scale using
10 mol % of TpRh(C2H4)2 and 2.0 equiv of the arylzinc reagent at 0°C for
e15 min. b The amount of lithium halide generated is a consequence of
the phenyllithium/zinc halide stoichiometry.c The catalyst was modified
with 200 mol % lithium bromide where indicated.d 20 mol % dibenzylidene-
acetone (dba).e Ratios of regioisomers were determined using capillary GLC
on aliquots of the crude reaction mixture.f GLC yields.

Table 2. Scope of the Regiospecific9 Rhodium-Catalyzed Allylic
Alkylation with Aryl Zinc Halides (eq 1; (Lg ) CO2CH(CF3)2)a

entry
allylic alcohol

derivative, R ) 1 nucleophile (Ar)
2°:1°
2:3b,c

yield
(%)d

1 Ph(CH2)2 a Ph- 15:1 87
2 “ “ p-MeO-C6H4- 13:1 81
3 “ “ p-Me-C6H4- 15:1 84
4 “ “ p-F-C6H4- g19:1 85
5 Me b Ph- 13:1 76
6 Me(CH2)8 c “ 12:1 91
7 iPr d “ g19:1 74
8 cHex e “ g19:1 72
9 iBu f “ 9:1 91

10 PhCH2 g “ 13:1 91
11 TBSO(CH2)5 h “ 14:1 87
12 AcO(CH2)5 i “ g19:1 95

a All reactions were carried out on a 0.1 mmol reaction scale.b Ratios
of regioisomers were determined by 400 MHz1H NMR. c The primary
products3 were prepared for comparison using Ph3ZnLi at room temper-
ature.d Isolated yields.
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tolerant of electron-withdrawing and -donating substituents within
the organozinc reagent, in which the former provides optimum
selectivity (Table 2, entries 2-4). Additional studies demonstrated
that linear and branched allylic carbonates serve as suitable
substrates (entries 5-12), in which theR-branched derivatives
afford the secondary alkylation products with optimum selectivity
(entries 7 and 8) in sharp contrast to our previous studies.4 The
allylic alkylation also proved feasible for the benzyl and acetate
derivatives (entries 10 and 12), illustrating excellent substrate
tolerance to the organozinc reagent.Hence, the regiospecific
rhodium-catalyzed allylic alkylation with aryl zinc halides proVides
an important new method for the construction of ternary carbon
stereogenic centers.

The ability to obtain excellent regiospecificity prompted the
examination of the enantiomerically enriched allylic carbonate(S)-
1b with the aryl zinc bromide necessary for the synthesis of (S)-
ibuprofen 6,10 to determine the stereochemical course of this
reaction. Treatment of(S)-1b (95% ee) under the optimized reaction
conditions, furnished the 3-aryl propenyl derivatives(R)-4/5 in 90%
yield (2°:1° ) 10:1), with inversion of absolute configuration (100%
cee). This result is consistent with direct addition of the nucleophile
to the metal followed by reductive elimination and thereby indicates
a significant departure from our previous studies.4 The synthesis
of (S)-ibuprofen was then completed through the oxidative cleavage
of the alkenes(R)-4/5 using catalytic ruthenium trichloride and
sodium periodate at room temperature to afford6 in 74% yield.11

In conclusion, we have developed a new regio- and enantio-
specific rhodium-catalyzed allylic alkylation of acyclicunsym-
metricalchiral nonracemic allylic alcohol derivatives with aryl zinc
bromides. This study demonstrates that the hydrotris(pyrazolyl)-
borate rhodium catalyst and requisite zinc(II) halide salt are crucial
for efficiency, while the addition of lithium bromide to the catalyst
is necessary for obtaining optimal regiospecificity. The stereo-
chemical course of this reaction was established through the
synthesis of (S)-ibuprofen6, which demonstrated that the alkylation
proceeds with net inversion of absolute configuration consistent
with direct addition of the nucleophile to the metal center followed
by reductive elimination.
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